If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=520
We move all terms to the left:
2x^2-(520)=0
a = 2; b = 0; c = -520;
Δ = b2-4ac
Δ = 02-4·2·(-520)
Δ = 4160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4160}=\sqrt{64*65}=\sqrt{64}*\sqrt{65}=8\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{65}}{2*2}=\frac{0-8\sqrt{65}}{4} =-\frac{8\sqrt{65}}{4} =-2\sqrt{65} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{65}}{2*2}=\frac{0+8\sqrt{65}}{4} =\frac{8\sqrt{65}}{4} =2\sqrt{65} $
| 7+a=30 | | -x+10=4x+10 | | 9(x−9)=8 | | x+x-6+x-12=x | | 6(x-9)=3x+ | | -2x-7-3x=-52 | | 2(w+8=22 | | 32=8+8a | | |a/5|=5 | | 2x+46=2(5x+3)+8 | | 4=9x(x+1) | | 7x–3=46 | | x-100=-x-88 | | 52x^2=752 | | 10X+12y=214 | | (x+4)^2+16=-4x | | 4x-40°=180° | | 2l=18 | | 6x=19-5 | | 6x=19=5 | | 6x=19= | | 0.5/x=0.66666 | | 6x-191=5 | | 0,2x=30 | | 120=3-(x/100) | | 3(x-5)=2-x | | 9^(x)-4*3^(x+1)+27=0 | | ^(x)-4*3^(x+1)+27=0 | | 9+12=4x+47 | | 0.5+x=0.666666666 | | 12(x-5)=7(x+2) | | P^-10p+15=0 |